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Abstract: We introduce a new model of mesons as quark-antiquark bound states. The
model is covariant, confining, and chirally symmetric. Qur equations give an analytic
solution for a zero mass pseudoscalar bound state in the case of exact chiral symmetry, and
also reduce to the familiar, highly successfull nonrelativistic linear potential models in the
limit of heavy quark mass and lighty bound systems. In this fashion we are constructing a
unified description of all the mesons from the pion through the upsilon. Numerical
solutions for other cases are also presented.



1. Introduction

An important component of the CEBAF experimental program will be devoted to a
detailed study of the quark structure of nucleons and baryon resonances, and to a search for
signatures of the effect of these underlying quark degrees of freedom on nuclear structure.
While there may be "smoking gun" signatures for such effects which depend only on the
comparatively easily understood perturbative features of QCD,! a thorough understanding
of baryon and nuclear structure at the momentum transfers available at CEBAF must also
take the non-perturbative aspects of QCD into account. A careful treatment of confinement
is therefore essential to such a study. ‘

Many models (the various bag models,?!? flip-flop models,!4 and non-relativistic
potential models!5) already exist and have proven useful in this context, and will continue
to do so. However, one notable characteristic of all of the most popular models presently
used is that they do not describe bound states in a Lorentz covariant fashion. While this
may not be a serious limitation in the treatment of inclusive processes, such as inelastic
electron scattering,16 in which one is probing the properties of a static target nucleus, it is a
serious handicap when describing exclusive or semi-exclusive events, in which a particular
hadron is to be observed in the final state. For these processes, which will clearly play a
large part in the experimental program carried out at the new accelerators, it is essential to
have a framework in which the quark-gluon bound states can be treated covariantly.

The goal of this paper, which we expect to be the first in a series, is to develop a
technique for modeling confinement which is consistent with chiral symmetry and which
also is exactly covariant. We believe that both of these requirements (exact covariance and
consistency with chiral symmetry) are essential if the results of such models are to be
expected to have any real predictive power. Even at CEBAF energies and momentum
transfers, mesons and nucleons recoil at relativistic velocities, and we must be able to
describe such a simple process correctly. Furthermore, we believe that the equations
should also conserve angular momentum exactly, as this is still an important constraint at
these energies. And a proper treatment of the pion, essential for nuclear physics
applications, cannot be expected unless the implications of chiral symmetry are built in
from the start. The mode! introduced in this paper has been developed with all of these



requirements in mind, and is, to our knowledge, the first time chiral symmetry,
confinement, and exact covariance have been combined in a single, solvable model.
[However, see Refs. 17-19 for a model in which chiral symmetry and confinement are built
in through an instantaneous, and hence noncovariant, potential.]

As a demonstration of the workability of our method, we show in this paper how it
can be used to study the structure of mesons. In later work we plan to add one gluon
exchange (OGE), do a systematic study of the meson spectrum, and eventually apply the
method to the study of baryons and simple nuclear systems.

The following features have been incorporated into the model:

(1) Mesons are viewed as bound states of two constituent quarks that can be off-
shell. In this sense, our model is a simple generalization of the non-relativistic (or
semi-relativistic) models of Isgur and his collaborators,!3 but the relativistic
propagation of off-shell quarks includes some additional contributions from g-gbar
pairs. The success of these models in describing the meson spectrum encourages
us to believe that we will also be able to eventually describe the meson spectrum
sucessfully.

(ii) Exact covariance is achieved by working in momentum space, where non-
localities and energy dependences can be treated comparitively easily.

(iii) The confining potential is made up of a constant part, which permits us to
adjust the overall energy scale, plus a relativistic generalization of the linear part
known to emerge, in the quenched approximation, from lattice gauge
calculations.?° In particular, the potential is constructed from a “leading” g~ term,
regularized by subtracting the leading singularity at g2 = 0. The form of the
potential is derived directly from a consideration of the non-relativistic linear
potential in momentum space, as discussed in Sec. 2.

(iv) The spin dependent structure of the confining potential is chosen to be
consistent with chiral symmetry. [In this first paper we explore the simplest case of
chiral symmetry under the U(1)xU(1) group. This still gives a large number of
possibilities, and the best choice, together with extension to the more realistic
SU(2)x8U(2) case, will be deferred to a later work in which we fit the meson



spectrum.] We assume, in the spirit of the Nambu Jonas-Lasinio (NJL) model,2!
that the symmetry is spontancously broken, giving the quark a constituent mass
which arises dynamically from its self interaction with the confining forces. The
pion then emerges naturally as the Goldstone boson associated with this dynamical
symmetry breaking, and its non-zero mass also emerges as a natural consequence
of the symnetry breaking introduced by the small bare quark mass term in the QCD
Lagrangian. This is discussed in Sec. 3 and further in Sec. 4.

The relativistic bound state equations we introduce have the feature that the relative
energy variable is constrained by restricting the quark to its positive energy mass shell
(refered to as the one-channel case), or, in the case of very deeply bound states, including
two channels, one with the quark on its positive energy mass shell and one with the
antiquark on its negatrive energy mass shell. [We will show in Secs. 4 and 5 that the
second channel is very small unless the binding is very strong or the quarks are very light,
so that for weakly bound, heavy quark systems the one-channel case can legitamately be
considered as an excellent approximation to the more correct two-channel case.] This
feature means that even though the equations are exactly covariant, they depend, like non-
relativistic equations, on the relative three-momentum only, and have a smooth non-
relativistic limit. The one-channel version of these equations has been used extensively for
the study of few-nucleon systems in the context of relativistic meson theory,2? and the
two-channel version was briefly discussed previously,23 but this is, to our knowledge, the
first time these equations have been applied to the study of quark bound states, and also the
first time it has been demonstrated that deeply bound states can be successfully described in
this manner.

There are a number of justifications for using a relativistic equation in which the
(heavy) constituents are restricted to their mass shell. In the context of relativistic meson
theory, it can be shown?# that (a) the infinite sum of all ladder and crossed ladder exchan ge
diagrams is necessary in order to derive a one body equation for a (light) particle (moving
in an instantaneous potential created by a spinless heavy particle) in the limit when the mass
of the heavy particle approaches infinity, and (b} the two body equation which sums this
series efficently in the same limit is not the Bethe-Salpeter equation, but one in which the
heavy particle is restricted to its mass shell. Briefly, the reason for this result is that the



parts of the ladder diagrams in which borh constituents are off-shell tend to cancel the
crossed ladder diagrams, leaving only the parts of the ladder diagrams in which the heavy
constituent is on-shell. This happens in all orders, and in some theories the cancellation is
exact as the heavy constituent mass approaches infinity.

It may seem strange (or even incorrect!) to treat confined quarks as on-shell
particies. In response to this anticipated objection, we offer the following:

(i) Confinement in our model arises from the linear interaction berween
neighboring quarks in a color singlet; the dynamical mass of such a confined quark
is finite. 'We do not offer a method for the calculation of the self energy of an
isolated quark, and in this sense our method is complementary (or orthogonal) to
that developed by Roberts er. al.25

(ii) Since the self energy of the confined quark is finite, its propagator has the
usual form, and because the singularities which arise from the confining g~ terms
are "softened” by regularizing subtractions [see item (iii) above and the discussion
in Sec. 4] the poles of the quark propagators are the dominant singularities, leading
to the equations we use.

(iif) The structure of the one-channel equation insures that the OGE terms, when
added later, will be color gauge invariant. We have not yet proved that this is also
true of the two-channel equation, but expect it to be so.

(iv) Putting quarks on-shell is consistent with both non-relativistic theory and
the commonly used light-front formalism, where it is assumed that alf quarks and

gluons are on mass-shell.

One of the limitations of the present work is that the quark self energies in the
bound state equations have been approximated by constants, and have therefore not been
treated in a fully self consistent manner. The method of restricting quarks (or antiquarks)
to their mass shell makes it easier to carry out such a completely self consistent program,
and this is planned for a subsequent work. Preliminary results suggest that these effects
may lead to corrections as large as 50%.

The paper is organized into six sections and one appendix. In Sec. 2 we define the



linear potential in momentum space, and introduce the one-channel equation. Section 3
discusses how we use the ideas of the NJL model to treat chiral symmetry, and shows how
the pion emerges as the Goidstone boson. Section 4 then combines the results of the two
previous sections, emerging with relativistic two-channel equations consistent with chiral
symmetry. MNumerical solutions of both the one-channel and two-channel equations are
obtained and discussed in Sec. 5. Some conclusions are given in Sec. 6. The appendix
contains some: technical issues concerning the regularization of our confining potential.

2. The Linear Potential

A relativistic treatment is most conveniently carried out in momentum space, where
non-localities are easily handled. This requires that the linear confining potential be reated
in momentum space also, and in this section the details of how this has been done are
presented.

2.1 Non-relativistic case

To treat the non-relativistic problem it is convenient to start with the relation

d2 —£r
V(l')=0‘r=lim0're‘£’=lim0'-—-5(e )
£-0 e-0 o r (2.1)
The potential in momentum space becomes
) 2
=8:rolim0 [— L 5 + 42’ 3:] (b)
@) (@)
=£ﬁ3ﬂ[VA<q) + ——-—32”:23} ©)
(2+ ) 2.2)



where V, is defined through the last equation. At this point it is tempting to let € — 0,
and to obtain the result that the linear potential in momentum space is simply V ,(q).
However this is inadequate because the resulting g~ potential is very singular at ¢ = 0,
and does not even describe the original linear potential. To see this, it is useful to recall that
the linear potential (2.1) is zero at r = 0, and therefore

d3q
J. 3‘,(4) =0
(27) (2.3)

This condition is satisfied by the exact result (2.2b), but is not satisfied by V, . Explicitly,

3
d q - q-r e t’
V(r)=J e "'Vi(g)=-¢
A (27:)3 A £
1
em0’ [’ - F] (2.4)

showing that V, approaches an infinitely large negative value as £ — 0. The additional
term in (2.2¢) “"corrects” (2.4) by supplying the (infinite) constant needed to normalize the
potential to zero at the origin. However, it has an inconvenient form, because as £ — 0 it
is small everywhere except at g2 = 0, where it is singular. In fact it behaves somewhat
like a delta function, and since its role is merely to cancel the infinite constant in (2.4), we
are lead to an alternative definition of the linear potential

V@) = lim [V,(0) - 8@) [*av ()]

(2.5)
This potential satisfies the condition (2.3) identically, and its Fourier transform is
. e’ g



For finite &, this potential is not identical to the original model (2.1), but has the same limit
as € — 0, and is therefore an equally good choice.
To adjust the mass scale, a constant term is often added. In momentum space this

corresponds to:
Ve (@)= (27)°8 (@) my € @7

where mj, 1s the reduced mass of the ¢ ¢-bar system, and C is a dimensionless constant.
The total potential, V- is then the sum of V, and V..
The potential can now be inserted into a Schrodinger equation, which in momentum

space takes the form
2 3
p },/ dk
- E (p)=—J-—V (p-K)¥ (k)
(2”'3 (2n)
=~ lim d3—kV(—k YE)- ¥ +m,CY¥
== lm sV, (Pp-K) [F&) (p)] +my (p)
(2m)
3 Yk)- ¥
_ Sdeks[ (k) 4(p)] v my C ¥(p)
(2r) (p-Kk) (2.82)

where p and k are the outgoing and incoming momenta of the quark to which a momentum
q = p -k is transfered. Note that the € — 0 limit can actually be taken in the last step in
(2.8a), because the wave function subtraction, [¥(k) — ¥(p)], cancels the strong
singularity at p = £, insuring that the integral on the RHS is finite. It is important to be
able to take this limit, because the quarks are truly confined by the linear potential only
when £=0. This can be seen by examining (2.6) and (2.8a) in position space. For finite
€, the potential approaches 1/¢ as r — oo, so that quarks with energies E > 1/e + C
can escape to infinity. This is the principal reason for prefering the form (2.5) to that of
(2.2¢).

The nonrelativistic linear potential is scale invariant, and therefore the reduced quark



mass can be scaled out of the Eq. (2.8a) by introducing dimensionless momenta p, =

p/mp and k, = k/mp , giving

3
. dk k)- ¥
(3p2-E,) wp.,)=81r( % H o k)= ¥, ¢y (p,)
mrJJ) 2rm) (P, — k) (2.8b)

The form of (2.8b) shows explicitly that the energy E =my E_ depends on two
dimensionless numbers: 6, = 0/ m,? and C.
In order to test our progress thus far, we solve equation (2.8) for the ground state

energy and compare with the exact solution

E=m, {c +2.33 (%a})!]
2.9)

where 2.33 is the location of the first node of the Airy function. [The £=0, § wave
solutions to the Schrodinger equation for a linear potential in position space are well known
to be given simply by the Airy functons. Solving the fourier transformed, integral
equation, (2.8), is however a more formidable task.] Our numerical method, described in
detail in Sec. 5 below, converges quickly to this correct value, as illustrated in Table 1.
The wave function also agrees with the non-relativistic result.

For applications to the relativistic problem, it is convenient to have a simple way to
estimate the eigenvalues expected, and this is provided by Feynman's famous trick?6 using
the uncertainty relation. Taking ground state expectation values of (2.8), and using the
uncertainty relation to replace <p,> by <l/m, r>, gives

2
1/ 1
E = me |:C +?(E) + G, ro] (2.10)

where r = <m, r>. Minimizing this expression with respect to r,, gives



r, =(%o) , E=m, [c + %(0;,2)-;}

(2.11)

which is remarkably close to the exact value.

2.2 Relativistic case

The previous discussion will now be generalized to relativistic systems. To
motivate the development, systems with at least one massive quark will be discussed first,
followed, in this section, by only a few comments on light quark systems. More
discussion of light quark systems will be given in Sec. 5, but a complete treatment of these
systems is postponed for a later paper.

The obvious way to generalize the definition (2.5) is to replace the non-relativistic
q? by the relativistic g% = qoz_ q2. If one of the two quarks is massive, the energy
transfered to it, g, , is expected to be small, so that the nonrelativistic limit should emerge
as the quark mass approaches infinity. However, this physical limit will not emerge
naturally unless some care is taken with the treatment of g, . [Recall the discussion of this
point in the Introduction.] One way to maintain covariance exactly, but also to allow the
non-relativistic limit to emerge naturally, is to restrict the heavy quark to its mass shell, so
that the four momentum transfer becomes

2 2
P=(Ep-E) -(®-kK", E,= [mi+p? 2.12)

where m, is the mass of the heavy quark. The energy transfer now automatically
approaches zero as m, —» oo.

This "potential” can be treated consistently to all orders if it is taken to be the kemel
of a relativistic equation in which the heavy quark is restricted to its mass shell throughout.
For spin !/, particles, the kernel will be written in the form



ViApk:P)=V, (p.k:P) 0] O,
12( eff - 12 (2.13)

where the Dirac matrices O which operate on the Dirac indices of particles 1 and 2 describe
the spin dependent structure of the kernel, and Vg 2 covariant scalar function, gives the
momentumn dependence of the effective confining potential. The four momentum variables
are related to the momenta of the quark, p, , and the antiquark, p, , by

p=iP+p P=p -p,
p,=p—%P p=%(p,+p,) (2.14)

with the direction of the antiquark momenta as shown in Fig. 2 (Sec. 3). The spin
structure of the kernel will be discussed in Sec. 3; the form of Veﬁwill be discussed here.
The relativistic equation which uses the kernel (2.13), with the quark on mass-

shell, has the form

&k Vg(pkiP)
I'(p.P)y=- O, {m + ¥ |Fk&P)m,+¥,10.
[t i ol dres e wp

(2.15)
where I' is the bound state vertex function. The covariance of (2.15) is obvious if the

integration is expressed in its equivalent covariant form:

4k
f'sz [d'ks(m?- k) 016

Many choices of the O's consistent with chiral symmetry are possible, and are discussed
in Sec. 3. The choice we will make there has the property

ZO; ["'1 + ”1] r [’"2* ”2]0:' =2(mym,~ k- k) Y

, (2.17)

10



which means that the pseudoscalar solutions of (2.15) have a pure ¥° structure:
F(p.P)=Ty(p.P)Y (2.18)

Specifically, substituting the ansatz (2.18) into (2.15) and using (2.17) gives the following
equation for the scalar function I,

dk [’”1”‘2"‘1 kz]

T(p.P )=—J V,;(pk ;s P) Tk, P)

(2r)E, (m-k;) @
3 ' T (k,P)
d k 0
== Ve(PpkiP)5—7
3 _
J(zx) 7 2B, - H o (219

where (2.19b) holds if m, =m, , and P = (g, 0), which will be assumed for the
remainder of the discussion.

The function V. is now constructed by following steps which parallel the
construction of its non-relativistic counterpart, Eq. (2.5). We require each step in the
construction to be manifestly covariant, and to reduce, in the limit as m; — o, to the
corresponding step in the construction of (2.5). There were two principal steps leading to
(2.5): (1) the definition of V,(q), and (ii) the regularization of its singular behavior at ¢ =
0 by the imposition of the constraint (2.3). We have already discussed the relativistic
generalization of V,(q); the straightforward replacement of q2 by —¢2, where g% was
defined in Eq. (2.12), satisfies the two requirements of covariance and smooth approach to
the non-relativistic limit. The second step is also straightforward if (2.16) is used to recast

the constraint into a covariant form

3
d k (MJV( k:P) =

P, ] )—0
J(Zz)3 E,

(2.20)

[Because V is no longer local, (2.20) it is conveniently expressed as an integral over the

momentum of the incoming, on-shell, quark. We could just as well integrate over the

11



momentum of the on-shell outgoing quark.] Following the principle that the subtraction
which cancels the singularities in V and impliments the constraint (2.20) should be in the
form of a § function, with support in the region where V is singular, and adding a
"constant” potential which is the relativistic generalization of (2.7), gives the following
form for V g

3
d k' '
Veﬁr(P:k;P)=VRA(ka)"Ek 6(p“k)J"E’: RA(p’k )

+C 20 E 5(p-k 221)

Unfortunately, the term V,, must include a cutoff factor (or form factor) not needed in its
non-relativistic counterpart, V,, because, without such a factor the integral in (2.21) will

not converge at large k'. We take

Vaa(p:k ) = - 870 I:1_4‘ 3 , 4]
q (2.22)

with g2 defined in Eq. (2.12).

The relativistic equation and relativistic linear potential for heavy quark systems are
now compleiely defined. Substituting (2.21) into (2.19b) gives

dk E, |
(2B, -+ E,C)¥(p)== | 55V, ,(p. k) *P(k)—[-g--}r(p)
2x) k (2.23)

where the wave function is

Iy(p.P)

Y(p)=t57—=
(2E, - 1) (2.24)

Note that Ec|. (2.23) reduces to the Schrodinger Eq. (2.8) in the limit m — e, provided

12



that A — oo also, and that it = 2m + E and 2Zmy = m.
The g4 term in the relativistic kernel still scales with the quark mass, but the form

factor mass A spoils this scale invariance, unless it is restored by adopting the convention
that this mass is also to be scaled by the quark mass:

A=m Ao (2_25)

so that A (instead of A ) is to be fixed. Since this scale invariance is an important
feature of the linear potential we are modeling, and since the cutoff mass does not represent
a scale of physical significance, we will adopt this convention, and chose a value of A
which insures that the relativistic kernel approximates the behavior of a linear potential as
nearly as possible. [Since A is one of the parameters of our model, its final value will be
determined in a later work from fits to the entire meson spectrum. In this paper, we chose
A, = 1.7, as discussed in Sec. 5.] With this choice, the dependence of the relativistic
equation (2.23) on the quark mass can be scaled away just as was done for the
nonrelativistic equation, and its solutions depend sensitively on the same two
dimensionless parameters, O, and C.

Equation (2.23) forms the backbone of our covariant, relativistic confining model.
However, to include the light mesons, and especially the pion, we still need to incorporate
chiral symmetry and also extend our on-shell reduction, natural in the heavy quark limit, to
that of the light quark case. These are done in Secs 3 and 4, respectively. Before
proceeding to do so, we first wish to discuss the structure and solutions of equation (2.23}
in a little more detail.

Two families of solutions are of particular interest. When ¢, << 1 and C is not
too close to -2 , it follows that p, = <p>/m << 1, and the qualitative behavior of the
solutions can be understood by expanding the equation in powers of m™! :

(p%[l+ -;—C]+2 - M, + C)q"("a)=‘ o, r,'¥ (r,) (2.26)

where now all quantities with a subscript o0 have been scaled by the quark mass. Using
» the uncertainty principle, this gives the following estimates for the size and mass of the

13



lowest bound state:

r, =(2:CJ’ , u =m[2+C+ 2([1+3C)a? )*] (2.27)

Note that the size and mass of the bound state are now correlated through the constant C;
in particular, as C — -2, the bound state mass and radius both approach zero. This
behavior is not an artifact of the non-relativistic approximation; examination of the exact
equation (2.23) shows that if C = -2, the solution is

¥ (p)= g—p (for p =0) 028

where N is a constant. The slow fall-off of this function with p, the relativistic analogue
of a constant, corresponds to a delta function in position space. In Sec. 5§ we will see how
we use this correlation with the constant C to get the pion, a nearly zero mass bound state,
correctly, and we will show that the estimate (2.27) agrees quite well with the actual
calculations.

3. Chiral Symmetry

As previously discussed, the goal of the model is a unified description of all the
mesons, from the pion to charmonium and the other heavy quark systems. In the last
section we saw how to generalize the nonrelativistic linear potential models known to
successfully describe charmonium to a covariant setting. Such a step is clearly neccessary
in order to either deal with boosts or with the lighter quark systems. The pion, as the
lightest of the mesons, and believed to be the Goldstone boson associated with the breaking
of chiral symmetry of the QCD Lagrangian, must be addressed separately. As this involves
a separate and independent line of development from that presented in Sec. 2, we will in
this section drop the on-shell, three dimensional reduction made there and instead work in

14



the full, four dimensional Minkowski space. In Sec. 4 we will then merge, through
various approximations, the results of the two sections and thus finally fully define our
model.

In recent years the old theory of Nambu Jona-Lasinio (NJL)2! has been
resurrected?’ as a possible model for the chiral symmetry breaking mechanism of QCD.
Originally describing pions as bound states of nucleons, the theory has received a much
more plausible application in the context of QCD as modeling the low-energy interactions
of quarks. In NJL, chiral symmetry is dynamically broken through the self-interactions of
the fermions. The existence of a deeply bound pseudoscalar state subsequently follows
naturally. We adopt this approach and also assert that QCD breaks chiral symmetry
dynamically. Since low-energy QCD certainly contains a lot of dynamics, such an
approach appears quite natural. However, unlike NJL where the quarks only interact at a
point and thus lose all information about the infrared structure of QCD, dynamical
symmetry breaking is implemented within our potential approach. We are thus in effect
generalizing NJL to include confinement.

Since we have no fundamental Lagrangian describing our potential, we work from
analogy with NJL. The potential interaction of the quarks is modeled as an exchange
interaction (as would occur in a simple boson exchange picture), involving two three point
vertices with the exchanged momentum determined by energy-momentum conservation.
The spinor structure of this interaction, O, is as yet undetermined. From general
considerations it must be chirally symmetric, but not all such choices for G will yield a

zero mass pion (in the case of zero bare quark mass). Nevertheless, there is stll a large set

{O%) that do, and the exact form of O will have to be deferred to a later work when we
fit the entire meson spectrum.
Following NJL, consider the self-consistent (Hartree)-Fock equation for the two

point Green's function at the one loop order, shown schematicaily in Fig. 1. Defining

Z(p)=pZ(p)+Z'(p) 3.1)

as the quark's self-energy, Fig. 1 gives:

15



d*k 1 .
a1 k)Z E—m T

PE(p)+ Z'(p)=i[ s (3.2)

where m,, is the bare mass of the quark.

We next write down the bound state equation for two dynamical quarks using the
ladder approximation, shown schematically in Fig. 2. As in NJL, we use the full quark
propagator. Defining I'(p,P) as the vertex function, where P2 is the invariant mass
squared of the bound state, Fig. 2 gives:

d'k ~orsk+ b “Poe
F(p,Py=if——3 e P k))‘_:o,- S(k+ )Tk PIS(k ~ )07 (3.3)
where
S(gy= —— (3.4)
(g—m,—Z(q)) '

We will now show how, with a particular choice of O, these equations are
consistent with a zero mass pion bound state when m_ is zero. As a first example consider
invariance under the SU(2)xSU(2) group, and take O so that

Zofof = 1= Y 7T, (3.5)

i.e. the sum of scalar-isoscalar and pseudoscalar-isovector exchange terms. The self-

energy equation then becomes:
oy (m, + Z° (k)
Fp)= z'j Q2n )‘ Yalp- )kzu-z'(k’»’—(m,+2‘<k»2’
, ¢ d'k p-k(1- X" (k)
2 - LN -
P @) =4 Ve P D E T e = + T Go

With the same interaction, the bound state equation for a zero mass pion with a vertex

16



function of the form:

L(p.p)=T,(p)7r° 3.7)
becomes
o d% V(= k)
I:(P)Tf - 111(27;)“ [kz(l_ZV(kZ))z _(ma +z:(k2))2]2 X

{(£0- 22+ m, + ZUOIL Y (BU- 2 (K) +m, + Z',2) +

Y (B1-Z7 (> +m, + Z D)L (PP (kA= 2 (k) +m, + 2 (D)7}
- (3.8)

Passing all they5 's to the left (as we have already done in the above with the 7's) we get

for I' (p)

d*k T, (k)

n(p) = --ZiIWVg(P " k) kz(l — Ev(kz))z -(m, + Z'(k))z .

(3.9)

Comparison of the self-energy and pion equations shows that, in the case of zero bare

quark mass, m,=0, the pion equation is insured of having a solution, namely

Z(p)=TI,(p) . (3.10)

On the other hand, if m_#0, the pion equation is inconsistent with the self-energy
equation. Hence, if m =0 there is a pion state with zero mass while if m =0, there is no
such state. We have thus generalized the mechanism of dynamical symmetry breaking of
NJL from point-like quark interactions to interactions acting over an arbitrary distance and
have thus incorporated in our model all the main qualitative features of low energy QCD,
namely: chira] symmetry breaking and confinement.

The choice of O is not unique; other structures exist that will yield a zero mass
pion solution when m,=0. Interestingly, one structure invariant under the simplest chiral
U(1)xU(1) group that does not have this property is the sum of scalar-isoscalar and
- pseudoscalar-isoscalar terms, i.e.
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200 =1-17; - 3.11)

In this case there is no dynamical symmetry breaking and hence no zero mass pion state.

With respect to the chiral U(1)xU(1) group, one structure for OF which does give
dynamical summetry breaking is

200 = %(1 - =V ) (3.12)

i.e. the sum of scalar, pseudoscalar and vector terms (all isoscalar) where v is an
arbitrary, nonzero, constant. This form has the advantage of being independent of the
quark flavor and will thus, perhaps, be a more natural choice for fitting the meson
spectrum. However, in this case a more complicated structure for the vertex function is

required in order to solve the pion equation, namely

L(p,P)=I;(p,P)ty’ + L;(p,P)ty’P+ I(p,P)tY’p . (3.13)

The equations for the vertex function greatly simplify if v = 1 and the form for
I(p,P) is then again given by Eq. (3.7). Because of this simplification we have chosen
to use this particular form for O for the remainder of this first, introductory work.
Again, the optimal form for O is part of our parameter fitting and the selection of a final
form, together with the extension to the more realistic SU(2)xSU(2) group, will have to be
deferred to a later work when we are fitting the physical mesons. For subsequent use in
the next section, we now simply state our results for the self-energy and vertex function

equations with this last (v =1 ) form for O" . For the quark self-energy we get:

m, + Z'(k)
k(1= Z7 k) = (m, + Z*(k))* °

= oy=-2]-ZX ¥ (p-0)

(27)

pen ot d'% _ p-k(1- X" (k))
p*E(p)= 21J‘(2 X Va(p )k2(1_2'(k2))2-(m,+2'(k))2

(3.14)
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which is nearly identical to our earlier result, Eq. (3.6). The vertex equation becomes:

oo [ Ak Vglo-LLK( , P* N _]
I(p)= 2'[(27:)‘ DD ((k 4)A(+)A() B(+)B(-) |, (3.15)
where

AR)=1-Z,(kxiP), B(t)=m, + Z,(kt4iP),

D(F)= (kx4 PY A(X) - B(1)* . (3.16)

Once again, if the pion mass is zero and m » 18 zero, the equation for I' (p) reduces
identically to that for the scalar self-energy, Z(p).

We must now discuss how the potential V. #P—q) appearing in equations (3.14)
and (3.15) is defined and thus wed the results of this section with that of Sec. 2. This
brings us to Sec. 4.

4. Confinement with Chiral Symmetry

Our model for the relativistic description of heavy quark systems was defined in
Sec. 2. The treatment of light quark systems, in particular the pion, requires the
construction of an interaction consistent with chiral symmetry. The general framework for
the construction of such an interactdon was outlined in Sec. 3. The task of this section is to
work out the details of how such an interaction is imbeded in the relativistic formalism
introduced in Sec. 2, and in this way define a relativistic model for the treatment of light
quark systems which is consistent with chiral symmetry.

4.1 Quark self energy

The first step is to cast the self energy relations, (3.14), into a form consistent with

the relativistic equation introduced in Sec. 2, in which one of the quarks is restricted to its
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mass-shell. In preparation for this, note that the self energy bubble, shown in Fig, 1, has
singularties arising from the internal quark propagator and from the linear kernel, which
contains the ¢~ term and a "subtraction" which regularizes the strong singularities of the
linear term at ¢? = 0. The detailed form of the subtraction term is not known for the case
when both of the quarks are off-shell, but we know there must be such a term even in this
case. The role if this tsrm would be to soften the singularities at g2 = 0.

If the quark self energy bubble is evaluated by integrating first over the energy
component g, , and if the singularities at g2 = 0 are softened by the subtraction, we are
lead naturally to the idea that the integral can be approximated by retaining only the
contribution from the positive energy quark pole at

2
K1 - 2k 2)]2=[m0 + 2 (k] 4.1

Assuming the dependence of 2¥ and X on k2 is very weak, so that their derivatives with
respect to k% can be neglected, this approximation gives the following result for the quark

self energy relations, (3.14)

3 5

5, 5 k(1 my+ Z
> (pz)—-zJ'(z )3(25;;}/"?(‘0_“[ , 2}

i (1- )

3
I =2| SV (-0 pE [
re J(Zn’)3 2B, ) Po "[1-2] 4.2)

where the second relation has been evaluated in the rest frame of the quark, and 5 =
ZF(m?) and X2 = 2V(m?). Specializing to the case when the external quark is also on-
shell, and renormalizing the potential strengths by ¢/(1-2")2 > & and the masses by
mi(1-2Y) — m, gives the following two relations for m and a = 2¥/(1-X2")



m = m, &£k (1
=- ol PRCEND (@)
R P N :

3
4k
ma= |55y _(p- k) (b
.[(2’”3 d (4.3)

Since both the external and internal quarks are on-shell in the relations (4.3), we may
substitute the form of Veﬁr given in Eq. (2.21). Note that, because of the constraint
(2.20), the linear term makes no contribution to the dynamical mass shift, and Eq. (4.3a)
relates this shift to the constant C

my

== (1 - T) (4.4)

As the bare quark mass approaches zero, C should approach the critical value of ~1.
Howerer, in Sec. 2 we saw that the mass of the composite system approached zero when
C approached -2, not -1. The reason for this discrepancy is that the bound state equation
does not yet include all of the contributions essential to a complete description of bound
states with masses ¢t — 0. The additional contributions which are necessary will be
derived and discussed in subsection 4.2.

Before turning to this discussion, we offer a few additional remarks and comments
about the Egs. (4.3). (i) Note that both the linear and constant terms contribute to the the
equation for the renormalization constant a. It can be readily seen that the contribution
from the linear term is positive, and therefore a is bounded from below by the contribution
of the constant term. This in turn permits us to prove that the renormalization factor must
be positive

1 i

- =l+a 21+C =520

(4.5)

showing that, in the approximation leading to (4.4), the mass renormalization does not

change the sign of the quark masses. (ii) To treat the dependence of functions 3~ and ¥

21



on k2 self consistently, it is sufficient to expand them to first order in (k2 — m?). These
additional derivative terms modify our results by as much as 50%, and deserve further
study. (iii) It may seem unphysical to treat bound quarks, which cannot exist in isolation,
by restricting them to their mass-shell. As we mentioned in the Introduction, in our model
the quarks only appear to propagate freely when they are in the vicinity of other quarks,
and it is the linear potendal interaction berween neighboring quarks which provides the
confinement; the self energy of the confined quarks is finite.

We turmn now to the issue of how to reconcile the relativistic equation with the chiral

constraint (4.4).
4.2 Equations for almost massless bound states

As mentioned above, Eq. (2.23) is not a suitable starting point for the description of
the pion because, as the current quark mass my — 0 and (therefore) C — -1, it does not
automatically produce a solution for a bound state with zero mass. Instead, zero mass
bound states occur only when C — -2. In this section we will show that this
inconsistency arises because a second channel, or component, of the relativistic wave
function has been omitted from (2.23). This component turns out to be negligibly small
except in cases where the bound state mass is very close to zero, or when the quarks are
very light. In such cases the problem is very relativistic, and the additional component
cannot be neglected.

To see how this additional component arises, examine the singularities of the
propagators for the two off-shell quarks, which occur in the equation (3.14). Ignoring the
self energy factor X (or, alternatively, approximating it by a constant in the vicinity of the

poles and renormalizing), there are four poles in the complex &, plane, shown in Fig. 3.

These are at
ko= E, - i ic la
=—E, —gu+ic 16
k0= Et+%u-—ie 2a
-_ 1 :
=-E, +sU+ i€ 2b 4.6)
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where the poles of the quark and antiquark are labeled 1 and 2 respectively, and positive
energy poles (for the direction of momenta shown in Fig. 2) are designated by the letter g;
negative energy ones by b. The positive energy poles lie in the lower half plane and
negative energy ones in the upper haif plane.

Equation (2.23) can now be obtained from Eq. (3.15) by doing the integration over
ko and retaining the pole 1a only. This proceedure can be justified in two different ways.
First, it can viewed as an approximation to Eq. (3.15) justified by the facts that (i) the
singularities comming from the linear potential are "softened” by imposition of the
constraint (2.20), the same argument used to justify the reduction of the quark self energy,
and (ii) the pole (1a) gives the dominant contribution from quark propagator poles (in the
loosely bound case shown in Fig. 3a where u is close to 2m). [The singularities
comming from the wave function are also assumed to give smaller contributions.]
Alternatively, in the context of relativistic meson theories,24 where light mesons are
exchanged between two heavy bosons, examination of the infinite sum of all ladder and
crossed ladder exchange diagrams shows that, in the limit where the heavy mass is
infinitely larger that the exchanged mass, this ladder sum is given exactly by the solution
of the relativistic equation in which one of the heavy bosons is restricted to its mass shell,
i.e. Eq. (2.23). The latter justification is clearly more convincing, but it also is not clearly
relevant to the system under current study. In any case, the use of Eq. (2.23) can be
justified on fairly general grounds.

Review of the above discussion shows why the method fails for bound states of
nearly zero mass, and how to correct it. We see that as u — 0, the two poles (la) and
(2a) approach each other, and coincide when p = 0 (see Fig. 3b). Clearly in this case
we cannot neglect the pole at (2a) in favor of the one at (1a)! Furthermore, the residues,
R, of the two poles are roughly proportional to the inverse of their distances from pole

(2b), and this ratio is
R
R

2Ek -u
2E, (4.7)

2a

la

showing that pole (2b) is unimportant for loosely bound systems (where u is close to
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2m}, but of equal importance when u is small. The correct equation for bound states
with nearly zero mass must therefore include the contributions from pole (2a), which
results in the introduction of another component of the wave function (with the antiquark
on-shell) and two coupled equations for these two components.

The new coupled equations have the following general structure:

Ir(p,P)=- P 5 {Vll(P,k;P)—""—rl(k'P) +V,Ap, k;P) el }
J (2m) (28, -np) ! (2E, + 1)

I(pP)=- [ £t ks{"zlcp,k;m————r‘(k’m +V,,(p, k; P) ] }
J(2r) (2E,-p) %2 (2B, + 1)

(4.8)
where I'| and I, are the two components of the vertex function, as illustrated in Fig, 4a,
and the four V's are the components of a matrix interaction kernel (Fig. 4b). The
subscripts 1 and 2 now designate how the relative energy k,, is fixed, with (1) the quark,
(2) the antiquark, on-shell, according to the relations (1a) or (2a) of Eq. (4.6). The
energy denominators appropriate to each channel were obtained as in the derivation of Eq.
(2.19).

The energy transfer is different for each of the V's, and this the key to their
definitions. IFrom Fig. 4b, one readily sees

2
?=(E, - E) ~(p-k)’ (for V,, and V)
, 2 2
¢=(E,—E, -~ 1) ~(p-K (for V,,)
2= (E E)’ k)’ for V
=(Ep+pu-E) -(P-K) (for V,) (49)

In completing the definition of Vqr for each element of the potential matrix, we continue to
impose the constraint (2.20), building up the kernel from three contributions: (i) the
"leading” ¢~ term defined in Eq. (2.22), with the appropriate g2 taken from (4.9), (ii) an
appropriate 6 function subtraction with support in the region where Vij is singular,
designed to insure the constraint (2.20) and regularize the strong singularities in V, and



(iii) 2 "constant” potential of the same form used in Eq. (2.21). These principles require
that V) =V,, =V g, as defined in Eq. (2.21). The definitions of the off-diagonal
potentials requires further discussion.

The first step in the definition of V|, and V,,, is straightforward and unique. Our
leading ¢~ terms, as defined above, are denoted by V12 and V,,2'. To implement
the second step we must first decide how to impose the constraint (2.20). Consider
V,,(p.k) first. Because it is not symmetric in p and k, it will not be possible to require
that (2.20) hold for both the initial and final channel af rthe same time. Stated another way,
the imposition of the constraint on the incomming channel 1 will mean that another
constraint (in which the RHS of (2.20) is not zero, but a finite function) will hold for the
outgoing channel 2. We will chose to imposé (2.20) on the incomming channel 1 for V,,
and, as required by hermiticy, impose it on the outgoing channel (also 1) for V', . Next,
the second step requires that we find the region where g% = 0. This involves a surprizing
amount of analysis, and is described in the Appendix. The singularities of V,M12 and
VM21 can be easily characterized using a cylindrical coordinate system oriented in the
direction of p, with components k, and k. In this coordinate system, the singulatities lie
on conics of revolution, bounded either by points where k£, = 0, or where both &, and
— e . When k, =0, k, may be either positive or negative, corresponding to k either
parallel or antiparallel to p. For a given magnitude of p and bound state mass 4, there is,
therefore, a range of values of the magnitude of £ over which V is singular, We will
denote the lower and upper limits of this region by &, and k, , respectively. The values
of k; and k, for different regions of p and u are given below and in the Appendix.

Now that the locations of the singularities of V,,1? and V2! are known, we
must decide how to carry out the subtraction (in channel 1) which will remove them from
the effective potential. In cases where the wave function depends only on the magnitude of
k, which is the case here, we will remove, or "cut out", the entire region between &, and
k, , and perform an additional subtraction at the boundary of the region. The removal of
the entire interior of the singular region is justified by the observation that the preceise
location of the singularity inside the region depends on both k| and k;, and hence any
subtraction which depends only on the magnitude of & will cancel completely. For Voo
the final result of these considerations gives the following:
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3
V0.~ B, 8 o)k k) J‘“‘ VAGK)  if k<k
Vua(p.kiPY=41 0 if k<k<k
310
Ve (p,k)~ E, 8(k, p—k) fdkvg(p,k') if <k
k'sk,
(4.10)
where
k=|p- M (2E, + ) b= p+ U QE, +p) @11
2E,-p+u) 2E,+p+u)
and
. E m
sp)= : ousm, andp>2[l+m—,u] (4.12)
-1 otherwise

(see the Appendix for details). Note that the definition (4.10) insures that any integrals
over V,, are finite by completely removing the interior of the region where VM21 is
singular and by subtracting terms which regularize VRA21 at the boundary of the region of
singularities. Note also that our definition insures that V,, will equal the linear terms in
V g [the first two terms in (2.21)] when p = 0.

The other potential V,, can now be obtained in one of two equivalent ways. First,
we may use hermiticity to conclude that

Via(p.k: P) = Vyy (k, i P) (4.13)

Alternatively, it should be possible to find a form similar to (4.10), but with the appropriate
¢ taken from Eq. (4.9), k, and k, modified as described in the Appendix, and (new)
subtraction terms consistent with the (new) constraint which holds for channel 2, as

discussed above. Such a form would be convenient because it would express the

- -, subtraction directly in terms of the integration variable £, but in this paper we will rely on



(4.13).

So far, the definitions of the off-diagonal potentials have been a relatively
straightforward generalization of the philosophy initially developed in Sec. 2. The last step
in their construction is the choice of a "constant” term, similar to the last term in Eq. (2.21).
So far we have not found a unique way of constructing this term. We know that chiral
symmetry requires that the diagonal and off-diagonal potentials be equal when i = 0, and
in this paper we chose the constant terms to be equal for all u, the simplest choice
consistent with this requirement. With this choice the coupled equations (4.8) become

3 E
(2E,-pn+E,C) B0 +E,C ¥(p) = —J‘é—’—{‘)—— v, (p,k)[wck) (E’J'ﬂ(p)}
k
d*k
J Gy e B0
d’k E
(2E, +1+E,C) ¥,(p)+E,C ¥(p) = - Gy VD) B=| 25 [#(p)
_ &k E,
[ggaonferS)r
k<k,
3
- J (fx’} V,::(p.k) (k) — (?*] 'P(kz)]
k>k,

(4.14)
where the explicit form for V,, remains to be worked out, and the coupled wave functions
are

Ii(p.P) I;(p,P)
¥(p)=t—= P === (4.15)
1 (ZEP —#) i (2EP +ﬂ)

The extension of our model to deeply bound states is now complete. Note that if
the extra channel described by 'V, is neglected, the equations (4.14) become identical to
the one channel equation (2.23), and that if u =0, the equations have the solution
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¥(p)= #(p) = (4.16)

P

provided C = -1, as required by chiral symmetry. The equations (4.14) reconcile the
requirements of relativity with chiral symmetry

As in the one channel case discussed in Sec. 2, we can use the uncertainty relation
to estimate the behavior of the solutions to (4.14). For the heavy quark case studied in
Sec. 2, the linear parts of the off diagonal potentials are much smaller than the linear parts
of the diagonal potentials (see Figs 5 and 6 in Sec. 5) for all but the smallest bound state
masses, so we will neglect them. We will also assume that the wave functions ¥, and
¥, have the same shape, with different normalizations, f; and £, , respectively (this is
also true of the exact solutions). Then the coupled equations for the expectation values
become

(P2 [1+5C]+2+C-p,) i +(1+3P3)C fi=-0, 1, f
(1+327) € £ +(p2 [1+4C]+2+C4p,) fy=~0, 1, 4.17)

where the energy has been expanded as in the derivation of Eq. (2.26). Solving these

equations for i, minimizing, and then calculating f,/f;, gives the following estimates

1

1+C Y 2 ) : £ 2m-yu

~ e ——— .—..4 — T ——

r, (o,[zw]) , u A+C)+6(a2 2+ [1+C]), A
(4.18)

Note that both the size and mass of the bound state approach zero as C — -1, and that the
strength of the extra channel grows as 2 — 0, becoming equal to the larger channel when

#=0. All of these resuits are well reproduced by the exact solutions, as discussed in the
next section. Finally, using Eq. (4.4), the bare quark mass may be expressed in terms of
f, and £, , and the dynamical mass m :

2
AL
mo_[f;+f2J m (4.19)



This concludes our theoretical discussion of the equation (4.14). We now turn to a

review of the numerical results.

5. Solutions

In this section we discuss our numerical techniques and present solutions to our
bound state equations in two limits: (i) the heavy quark case, where m2 >> o and (ii) the

light quark case where m? ~ o.
5.1. Numerical Methods

In this first paper we choose to solve the coupled equations (4.14) for the constant
C as a function of the bound state mass p and with (at this point, arbitrarily) fixed
parameters ¢, and A, We already know the solution to the equations in two extreme
limits: 1) the true nonrelativistic limit where ¥,(p) is simply the fourier transform of the
first Airy function and ¥,(p) ~ 0, and 2) the zero mass pion case, u=0 , where
¥ (p)="¥,(p)=1/E(p). These two limiting solutions behave very differently at large
momenta p (the nonrelativistic solution having a rapid fall-off, whereas the zero mass pion
case has a long tail) and the challenge is to develop a technique for solving the equations
that can interpolate between these two limits. In addition, there is the technical problem of
110 Vigand V.
To solve the equations, we first expand each wavefunction, ¥,(p) and ¥,(p),

handling the poles in the integrands arising from the potentials V

in terms of a finite set of basis functions, (b;(p)], and then solve for the coefficents of
this expansion, and for the value of the constant C. A principal reason for using analytic
basis functions is that there are then no difficulties in performing the integrals over the
singularities in the integrand. For each basis function bj(p), each term in equation (4.14)
is first evaluated, and then expanded in terms of the set {b;(p)]; for example, we expand
the product E(p)b(p). Since this product [or any of the other terms in Eq. (4.14)] is not
in general exactly expressible as a linear combination of the finite set {bj(p)}, a linear
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least squares procedure is used to obtain the best fit possible. For a basis set with n
functions, we thus construct (for given u, o,and A ) from Eq. (4.14) a generalized
eigenvalue problem Ax=ABx, where A and B are matrices of dimension (2n)x(2n)
containing the coefficents of the linear least squares expansion, the eigenvector x is of
length (2n) whose entries (which we are solving for) are the expansion of the wave-
functions ¥,(p) and ¥,(p), and the eigenvalue A is the constant C. We solve for A
and x using standard techniques and identify the ground state as that solution with the least
negative (i.c. closest to zero) eigenvalue. We then iterate the procedure, increasing the
number of basis functions in the set {#;(p)} until the solution converges. For the set
{bi(p}}, we use

P

....i
b(p)=N, L(Lye = (5.1)
m,

where L;is the jth Laguerre polynomial, m, is an arbitrary mass parameter, and N yisa
normalization factor with dimensions of inverse mass. The advantages of this choice of
basis functions are: 1) the bj are orthogonal over the interval 0 € p < =, and; 2) in the
limit n — oo, the set {b;(p)) is complete (any analytic function is expandable in terms of
them), and therefore the method must in principle ultimately converge to the correct
solution, independent of m,. In practice though, to obtain convergence rapidly the choice
of m,, is crucial and at times problematic.

5.2 Results

The first application of our numerical technique has already been presented in Sec.
2 where we solved the nonrelativistic equation (2.8) and quite accurately reproduced the
known analytic results (see Table 1). The fully coupled relativistic equation is a much more
complicated problem. One relevant issue concerning these equations and already briefly
mentioned in Sec. 4, is the structure and relative sizes of the diagonal and off-diagonal
integrals in Eq. (4.14). Whereas one cannot unambiguously discuss this point for every

m and u without knowing the full solutions ¥,(p) and ¥,(p), a comparison of these

30



integrals over the first Laguerre basis function b,(p) should be indicative. In Figs. 5 and
6 the integrals of b,(p) over V|, and V5, [as they appear in Eq. (4.14)] are presented
as a function of the dimensionless variable (p/m) for two different values of u/m.
[Recall V3 has been defined from V,; through hermiticity, Eq. (4.13).] We see that
these curves are smooth and that the off-diagonal integrals are slowly developing into the
V11 contribution as the bound state mass approaches zero. In fact it is only for the most
deeply of bound systems that the off-diagonal elements V,, (and hence V}j) are at all
appreciable. For simplicity we have thus accordingly set these terms to zero. These curves
also depend on the Laguerre mass, m, and the cutoff mass A,. We took A,= 1.7.
Although our value is at this stage somewhat arbitrary, A o has been chosen so that the
integral over V; traces fairly closely its corresponding non-relativistic version, V;, in
Eq. (2.5) and thus preserves the low energy, linear confining features of our potential. The
integral over V, has likewise also been included in these figures. The value of the
Laguerre mass, m, = 0.17m, is the same as the one used to obtain the solutions in both
the heavy and light quark regimes. Although convergent solutions do not depend on m ya
gross errors in the choice of the Laguerre mass (such as a factor of ten) make such

solutions unobtainable with only a few basis functions {(n ~ 10).

a) the case of heavy quarks (m? >> o)

In this situation there are two scales to the problem and accurate, numerical
solutions are subsequently relatively easy to obtain until the very smallest bound state
masses. For o we take a value consistent with lattice studies and nonrelativistic models:
o= 0.2(Gev]i2. For the heavy quark case, we then taken m=3.5 Gev, approximately a
factor of ten larger than what might be considered a reasonable value for the constituent
mass of the up and down quarks. This value for m is also, coincidently, approximately
the mass of the bottom quark. It should be emphasized that in this section we are only
obtaining test solutions to our equations and that no physical meson should yet be
associated with any of these solutions. In particular, we're not claiming that a deeply
bound pseudoscalar state of bottom quarks exists. We could have equally chosen to work
in this section with a value of both & and 1 ten times smaller.

For this case both the one and two channel equations [(2.23) and (4.14) respectively]
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were solved for a variety of bound state masses. The results are shown in Figs. 7-10.
Figure 7 plots the value of the constant C for both channels versus the bound state mass,
y. The circles are our numerical solutions. The smooth curves are the estimates made in
Secs. 2 and 4 for the relation between 4 and C, and given by equations (2.27) and
(4.18), respectively. We see close agreement between our solutions and these estimates,
Figure 8 plots the ratio of ¥,(0)/%¥,(0) for the two channel solutions, and the estimate
for this ratio given in equation (4.18). Again there is close agreement between the two,
perhaps beyond what might be expected since these estimates involve a non-relativistic
expansion of the energy factor E(p) which is certainly incorrect in the limit C ~» —1.0 (or
-2.0 in the one channel case). However the success of these estimates probably relies
more on the small size of ¢, (~0.02) and the ignorability of the off-diagonal integrals (as
suggested in Figs. 5 and 6) than the average size of the momenta, p.

In Figs. 9 and 10 the wave functions for both the one and two channel solutions are
plotted for two illustrative bound state masses. In the first case of small binding energy
(u = 6.0), relativistic corrections are of the order of 10% as might be expected. More
interesting is the fact that the wave function ‘¥,(p} is unchanged in going from the one to
two channel equation - the presence of the second channel being completely absorbed by a
modification of the value of the constant C. For more tightly bound solutions (e.g., 4 =
1.75) this is no longer the case and ¥,(p) is significantly modified, becoming broader in
momenta space. In this case ‘¥,(p) is also is more significant. The neccessity for using

the fully coupled, relativistic equation in this limit is clear.

b) The case of light quarks ( m? ~ &)

Solutions have thus far been obtained in this case only for large bound state masses
(i~2m). For more deeply bound systems our numerical techniques have not so far given
stable solutions. What is probably needed is a set of basis functions that individually more
closely approximate the correct solutions, for even in the case of the lightly bound systems
the convergence of the Laguerre series was slow, and we found great sensitivity in the
value of the constant C and in the exact shape of the wavefunctions at large momentum
(although the relative sizes of the two channels are much more stable). We thus defer a full

- analysis of the light quark case to a subsequent paper and only present here our results for
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the lightly bound systems. These are still instructive.

We work with a quark mass m=0.35, while the coefficent of the linear potential o =
0.2 as before. The solutions ‘¥ {p) and ‘¥,(p) for a bound state mass u = 0.6 are
shown in Fig. 11. Note how much larger ¥,(p) is here than in the analogous, 4= 6
sotution for the heavy quarks shown in Fig. 9. Preliminary results for more deeply bound
systems (i = 0.14) strongly suggest this trend continues and that ¥,(p) and ¥, (p)
rapidly approach equal value. As expected for the case of light quarks, even moderately
bound systems are highly relativistic and use of the fully coupled, two-channel equation is
absolutely neccessary. No nonrelatvistic (one-channel) reduction can be made.

The solution in Fig. 11 corresponds to a value of the constant C ~ —1.3. The fact that
C < -1.0 is not yet understood in conjunction with our quark self-energy relation,
equation (4.4), which would appear to suggest such a value is unphysical. The source of
this discrepancy may be due to one or more of the following factors: (i) the approximations
made concerning the quark propagator in deriving the bound state equations (4.14),
namely, the simplification of replacing the full quark propagator by a Feynman propagator
with a constant mass, (ii) ambiguites in defining the off-diagonal constant potential, (iii) the
neglect of the off-diagonal elements V51 and V5, or (iv) inaccuracies in our numerical
method for the determination of C, which may be as large as 20% in the light quark case.
Although an intriguing issue, especially considering the nice results obtained for C vs. y
in the heavy quark case presented in Fig. 7, we feel that furthur discussion of the constant
C must be postponed until a full systematic study of the light quark case has been

successfully compieted.

6 Conclusions

A new mode! of mesons has been introduced that is covariant, confining and which
includes chiral symmetry. In this fashion we are developing a unified description of all the
mesons, from the pion to the upsilon. The exact definition of our approach awaits later
work when the small number of pararmeters in our model are determined by fitting the full
meson spectrum. Our equations are analytically solvable in the limit of absolute chiral

33



symmetry (i.e., zero pion mass) and reproduce the very successful nonrelativistic linear
potential models in the case of lightly bound, heavy quark systems.

We have obtained numerical solutions for a pseudoscalar bound state in the case of
heavy quarks and arbitrary bound state mass. Furthur work along these lines remains for
the case of light quarks. One important ingredient that needs to be added is the effect of
one gluon exchange. As OGE effects are expected to be especially large in the case of light
quarks, their inclusion will be an important part in the next stage of development.

Acknowledgements

We are grateful for the support of the Department of Energy under grant no. DE-
FGO05-88ER40435. We thank M. K. Banerjee and T. D. Cohen for a very useful
conversation, and also wish to thank the physicists and staff at the INFN, Sezione Sanita,
in Rome, and at the Institute for Theoretical Physics, University of Utrecht, for hospitality

during visits when some of this work was done.



Appendix

2
In this appendix we will determine the location of the singularities of Vi, ' and

Ve Au. These occur when ¢2 = 0. Introducing components of k parallel to and

perpendicular to p, and defining k' = k, — p, the location of the singularities can be
determined from Eq. (4.9), which becomes

(E,-Etp) =057 4] A

where in Eq. (A.1) and all subsequent equations the upper sign refers to VRAH and the

lower one to VRAH. Expanding the square on the LHS gives

(B, £1) + E*+2pk'=2E,(E, + ) (A2)

[4

If both sides of this equation have the same sign, it may be squared without introducing

. . . .. 21, .
spurious roots. Since the RHS is always positive for V", this reduces to the following
restriction on &' if it is to be a root of (A.2)

2
(E,+u) +E2+2pk'>0 (A.3)
For VRAIZ, there are two cases depending on whether or not Ep is bigger or less than u:

2
(E,—u) +E2+2pk'>0 (a)

(E,—p)2+Eﬁ+2pk,,'<0 (b) (A.4)

If Ep is greater than 4, the roots must satisfy condition (A.4a), while if Ep is less than

4 they must satisfy (A.4b). Keeping this in mind, (A.2) can be squared and written in the
following form:

35



akl+B(k—k)Ug—k)=0 (A.5)

where
a=4(E, tp) B=a-4p*=4[E,+u+p|[E, +u-p]
+ 2E, +
b= pr PCEEN) b= p3 LOEER)
2(E,+ptpu) 2(E,~pxy) (A.6)

Equation (A.5) shows that the singularities lie on conic sections of revolution, which are
ellipsoids if 8> 0 and hyperboloids if §<0.

Consider the potential V, Azl first. In this case B is always positive, and the
singularities lie on an ellipsoid of revolution bounded between k, (which can be negative)
and k, (which is always positive and larger than k, ). Furthermore, &, is never so
negative that it violates the condition (A.3). Expressed in terms of the magnitude of &, we
see that the singularities are first encountered when & = lk,| , and that when & > k, there
are also again no more singularities. Cutting out the region where the location of
singularities depends on both k| and k; gives the results recorded in Table 2, with &, =
Ik | and k, = k,. Finally, k, < 0 means that k is antiparallel to p, requireing the &
defined in Eq. (4.12) to be -1, and the range of p over which this occurs is as given in Eq.
(4.12). The boundaries of the singular region are shown in Fig. 12a and ¢.

. . 12, . .
The direct analysis of V,,  is considerably more complicated because 3 can be

negative. As p is increased from zero, B is first positive, but then changes sign when p
reaches the critical point

2 _ 2
P, = M (AT

2u

If 4 < m, this happens because E, —p + u goes through zero at this point, causing &,
— +oo (when p <p_.., ) and then (when p >p_. ) increase from —e . The large
negative value of &, is associated with the second branch of the hyperboloid of revolution,

which need not be considered, however, because this root is spurious, violating the

36



inequality (A.4a). Hence the only singularities of V An, for 4 < m, lie between &, =
lk,| and k, =k, (if p <p_,;), or k) =< (if p > p_ ), consistent with Table 2. Next,
if 4 > m, the critical point is reached when E, +p—p =0, because the other factor in
B. Ep - p — i, is always negative. But when p <p_,, it turns out that neither k,
nor k, satisfy the inequalities (A.4), showing that they are both spurious roots, and that
Va Au has no singularities when p <p_,;. In the language of Table 2 and Eq. (4.10)
this means that k, = k, = . Finally, when p > p_,, the root k, is spurious, and the
singularities lie along only one branch of a hyperboloid of revolution, bounded by &, =
le,l and o=, as given in Table 2. In both cases, k, is positive, and hence k is parallel to p,

only if p > it [1+#/2(m+y)). The boundaries if the singular regions for V,, are
shown in Fig. 12b and c. Note that these are related to those of V,, by p & £, as
required by hermiticity.

An explicit form for V, , similar to that given for Vo in Eq. (4.10), can be
obtained by using Eq. (4.13) and the definitions of £, and &, worked out above and
summarized in Table 2, but, since we have neglected these terms in this work, this will be

postponed to a subsequent paper.
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Table Captions:

1. Comparison of our numerical solutions to Eq. (2.8) with the exact analytic value given
in Eq. (2.9). The mass of the quark was taken to be 0.35 GeV, that of the bound state

0.69 GeV, and the constant C = 0. We thus solved for 1 = 870,

2. The boundaries k, and k, of the region of singularities of the off-diagonal potentials
V,, and V, for different values of the momenta p and bound statc mass A



Figure Captions

1. The self-consistent Dyson equation for the quark sélf-encrgy. Blobs represent the full
quark propagator, while the heavy dashed line schematically represents the potential.

2. The equation for the vertex function.

3. The position of the poles, Eq. (4.6), in the quark propagators evaluated for p=0 and (a)
H~2m and (b) u~0.

4. The representation of the two vertex functions and four potentials. A quark line with an
X is on-shell.

5. The integrals of the first Laguerre basis function over the potentials V,, and V,,
plotted versus the dimensionless variable p/m. The dashed line is the integral using the
non-relatvistic definition of the potential V;, Eq. (2.5). The mass in our cutoff function

A,=1.7, the mass in the Laguerre basis function m,=0.17m, and p/m=0.5. Note that
V,, 1s all but ignorable.

6. The same as Fig. 5 except that now u/m=0.125.

7. Solutions for the constant C as a function of i/2m for both the one and two-channel
bound state equations in the case of heavy quark mass. Qur numerical solutions are the
large circles, while the curves are the estimates for the one and two-channel solutions given
in Eq. (2.27) and (4.18) respectively.

8. The ratio '¥,(0)/¥,(0) as a function of u/m. We use the same notation as in Fig. 7.

9. Our solutions for the wave functions for both the one and two-channel equations for the
case of a lightly bound system of heavy quarks (14/2m = 0.85). The wavefunctions have
been normalized such that ¥,(0)=1. The full and dashed curves are the two-channel

solutions ‘¥, and ¥, ,respectively, while the dotted curve is the one-channel solution.
In this limit we see that a non-relatvistic reduction is quite sensible.

10. The same as in Fig. 9 except now the quarks are deeply bound, g/2m = 0.25. The
quarks are clearly now highly relativistic.
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11. The solution for the wave functions of the two-channel equation in the case of a lightly

bound system (1/2m = 0.85) of light quarks. As opposed to the analogous case of Fig.
9, no non-relativistic approximation is possible.

12. The heavy solid lines are the boundaries of the singular regions of the potentials V12
and Vp,2l. (a) Vz,2! for p<m, (b) Vg, '2 for u <m, (c) Vg,2! for g > m, and
(d) Vg,'? for u > m. In each figure the vertical axis is £ and the horizontal axis is p,
and the shaded lines are asymptotes.
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Table 1

# basis functions 0 Mo Parn ~ Meheo) X (1O
4 1.2505596 0804613
1.1795415 0094432
8 1.1723112 0022129
10 1.1710102 0009119
12 1.1701975 0000992
14 1.1701639 .0000656
Table 2
kl k2
if p< 2 uQE,-p) uQE, - )
and u<m 2E,+p-p) 2E,—p—-H)
ui-m?
Vn if p< Zu oo oo
and uz2m
otherwise HQE, ~ ) oo
XE,+p—u)
v, ‘ __HQE,+p) ’ L HQE )

2(E,—p+y) 2E,+p+yu)




Fig. 1



(a) (b)

Fig. 3



(a)

Fig. 4

(b)

Vi







!
DY



-1.5

-2.0




¥2(0)/¥,(0)

1.0

0.8

0.6

0.4

0.2

L] | T F 1 ’ L L L I | I D B | I LU ,)

i

-

plllllllll!llllllll[llll

0.0

[



1.00

0.75

Y 0.50

0.25

0.00

R



1.0

0.8

0.6

0.4

0.2

0.0

llllllillllllll’llIIIITII

IllllIIElllIlllllllJlllllll

o

1.5

N



1.0

0.8

0.6

0.4

0.2

0.0

Illilllll,llll'lilllllll

Illl[llllIIIIIIIIIIIIIIIIII

Qo

o



(a) (b)

(c) (d)

Fig. 12



1.0

0.8

0.6

0.4

0.2

0.0

—

ey
—
—

—

i

mIlllllliIlllltllllllllllllll



